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Abstract Tin oxide nanoparticles were synthesized by

electrochemical oxidation of a tin metal sheet in a non-

aqueous electrolyte containing NH4F. The as-prepared

nanoparticles were then thermally annealed at 700 �C for

6 h. The resulting particles were characterized by a variety

of experimental techniques, including X-ray diffraction

(XRD), high-resolution transmission electron microscopy

(HRTEM), Raman, UV-visible, and photoluminescence

(PL) spectroscopy. The XRD patterns clearly showed that

the amorphous phase of the as-synthesized SnO2 particles

was transformed into a rutile-type crystalline structure after

thermal treatment; and from the line broadening of the

XRD peaks, the average size of the annealed particles was

found to be 15.4, 12.5, 11.8 nm for the particles initially

synthesized at 20, 30, and 40 V, respectively. Consistent

results were also observed in HRTEM measurements

which showed clear crystalline lattice fringes of the cal-

cined nanoparticles, as compared to the featureless profiles

of the as-produced counterparts. In Raman spectroscopic

studies, three dominant peaks were observed at 480, 640,

and 780 cm-1 which were ascribed to the E1g, A1g, and B2g

Raman active vibration modes, respectively, and the

wavenumbers of these peaks blue-shifted with decreasing

particle size. Additionally, a broad strong emission band

was observed in room-temperature photoluminescence

measurements.

Introduction

Transition-metal oxide nanomaterials, such as ZnO, TiO2,

WO3, and SnO2, have attracted extensive research interests

owing to their unique physical and chemical properties and

diverse potential applications in optical and electronic

fields. Of these, tin oxide (SnO2) with the rutile structure is

a promising functional n-type semiconductor material with

a wide band-gap (Eg = 3.65 eV at 300 K), which has been

used extensively in energy storage and conversion (for

instance, solar cells and lithium ion batteries) [1–3],

catalysis [4–6], gas sensors [7–11], transparent conducting

electrodes [12], and optoelectronic devices [13–15].

To date, a wide variety of SnO2 nanomaterials with

interesting structures and properties have been prepared,

such as nanoparticles [16–19], nanorods [20–22], nano-

tubes [3], nanowires [9, 23], nanobelts [8, 24, 25], and

hollow spheres [26, 27]. The typical synthetic approaches

entail sol–gel processes [2, 11, 28, 29], vapor-liquid-solid

(VLS) growth [25, 30, 31], chemical vapor deposition [32–

34], sputtering [35, 36], and solution phase growth [7, 37–

39]. In these, high temperature and/or vacuum are gener-

ally required, along with complicated pre- and post-

synthesis processing. For instance, in most of these strat-

egies, surfactants or organic polymers are used to control

the dimensions and morphologies of the SnO2 nanomate-

rials. Yet, prior to practical applications, these organic

impurities typically have to be removed, and such pro-

cessing may lead to complication of the particle size,

surface area, and stability of the particles. In the traditional

solution phase growth methods [7, 37–39], the by-products

may also compromise the material purity. Thus, it is

important to develop an effective strategy to prepare pure

tin oxide nanomaterials with high efficiency and under

mild conditions from the viewpoints of both fundamental
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research and practical applications. To this end, electro-

chemical techniques have proven to be very effective,

which in recent years have been employed to prepare size

and shape controlled (alloy) metal (e.g., Pd, NiPd, FeCo,

etc.) [40, 41] and metal oxide [42–44] nanoparticles. In

these methods, simple two-electrode setups are used and

the metal anodes are offered as a sacrificial source for

metal or metal oxide nanoparticles. The advantages of

these electrochemical routes lie in the simplicity, conve-

nience, and the generation of pure, homogeneous, and large

quantities of particles.

In this article, we report a simple one-step route based

on electrochemical oxidation of a tin metal sheet to the

preparation of a large quantity of SnO2 nanoparticles in a

non-aqueous electrolyte containing NH4F. In recent years,

various fluoride compounds such as HF, NH4F, NaF, and

KF have been used as effective etching reagents in the

synthesis of highly ordered arrays of TiO2 nanotubes by the

anodic oxidation method [45–47]. This is to take advantage

of the enhanced electrochemical dissolution of TiO2 in the

presence of fluoride ions. In the present study, the etching

characteristics of fluoride electrolytes were exploited for

the preparation of SnO2 nanoparticles by electrochemical

dissolution of a tin metal sheet. The particle size was found

to be controlled by the applied voltage. Effects of thermal

treatments on the particle crystalline structure were then

examined by a wide array of spectroscopic techniques.

Experimental section

Tin foil (0.25 mm thick, 99.8% purity (metal basis)) and

ethylene glycol (99+%) were purchased from Aldrich.

Ammonium fluoride (NH4F, 98+%, extra pure) was pur-

chased from ACROS. These were all used without further

treatment. Before the experiments, the tin sheet was de-

greased by sonication in acetone, ethanol, and Nanopure

water successively and then dried in nitrogen. The SnO2

nanoparticles were prepared by using a simple two-elec-

trode (2 cm separation) cell in which the tin foil was used

as the sacrificial anode and a Pt coil as the cathode, along

with a non-aqueous electrolyte consisting of 74 mM NH4F

in ethylene glycol. In a typical experiment, around 10 g of

SnO2 nanoparticles were produced in each batch. All the

electrochemical reactions were carried out at room tem-

perature using a DC regulated power supply (B&K

Precision Corp., 1623A, output voltage 0–60 V) in the

constant voltage mode. Three samples were prepared by

varying the applied voltage at 20, 30, and 40 V, respec-

tively. After the reactions, the resulting white powders

were centrifuged and thoroughly washed with Nanopure

water and absolute ethanol for several times and dried at

room temperature. The dried powders were then calcined in

air at 700 �C for 6 h with the heating and cooling rates

controlled at 5 �C/min to convert the amorphous phase to

the crystalline one.

Powder X-ray diffraction (XRD) was performed on a

Rigaku Mini-flex Powder Diffractometer using Cu-Ka
radiation with a Ni filter (k = 0.154059 nm at 30 kV and

15 mA). The average particle size was calculated from the

X-ray line broadening of the (110) and (101) diffraction

peaks by using the Debye–Scherrer equation (in the cal-

culations, the instrumental broadening was taken into

account, which was calibrated with standard Si samples).

High-resolution transmission electron microscopic (HRTEM)

images were collected with a Phillips CM200/FEG (field-

emission gun) electron microscope operated at an accel-

erating voltage of 200 kV. TEM samples were prepared by

depositing a drop of a dilute SnO2 dispersion in ethanol

onto a carbon-coated copper grid. Raman scattering spectra

were acquired using an RM series Renishaw microscope

with a 50 mW diode laser at 780 nm. Renishaw’s WiRE

(Windows-based Raman Environment) proprietary soft-

ware with Galactic Industries GRAMS/32 C software was

used for data collection and analysis. The SnO2 samples

were visualized under white light and then Raman scat-

tering data were collected between 100 and 3000 cm-1.

Prior to each measurement, a Si wafer was used to calibrate

the Raman equipment by the characteristic band at

520 cm-1. Photoluminescence (PL) studies were carried

out with a PTI fluorescence spectrometer and UV-Vis

spectra were collected by using an ATI UNICAM UV4

spectrometer.

Results and discussion

To examine the effects of thermal annealing on the particle

crystalline structures, powder X-ray diffraction measure-

ments were first carried out. Figure 1 shows the XRD

patterns of the SnO2 nanoparticles prepared at different

voltages (20, 30, and 40 V) before and after thermal

treatments. The JCPDS data of SnO2 (cassiterite) is also

included in the figure (curve a). It can be seen that the as-

prepared SnO2 samples (curve b, represented by the one

synthesized at 40 V; others show similar results) exhibit

only featureless profiles with two (weak) broad peaks at ca.

2h = 30� and 58�, signifying an amorphous phase of the

materials. However, after thermal annealing at 700 �C for

6 h, all three samples (curves c–e) show clear, sharp, and

strong diffraction peaks that are in excellent agreement

with the tetragonal structure (rutile type) of SnO2 in JCPDS

No. 41-1445 (curve a), with the lattice constants of

a = 4.738 Å and c = 3.187 Å. This strongly suggests the

transformation of the particles into a crystalline form.

Additionally, no diffraction features that are characteristic
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of impurities such as unreacted Sn and other tin oxides

phases were observed, indicating the purity of the SnO2

nanocrystals.

From the XRD patterns in curves c–e, it can be seen that

the diffraction peaks are broadened in comparison with those

from bulk materials (curve a). This is attributable to the small

size of the SnO2 particles. In fact, the average size of the

SnO2 particles can be estimated by the Debye–Scherrer

equation, D = Kk/b cos h, where D is the diameter of the

nanoparticles, K = 0.9, k (Cu-Ka) = 1.54059 Å, and b is

the full width at half maximum of the diffraction peaks.

Based on the (110) and (101) diffraction peaks, the average

size was found to be 15.4, 12.5, 11.8 nm for the SnO2

nanoparticles that were initially synthesized at 20, 30, and

40 V, respectively. Clearly, the particle size decreases with

increasing electrode voltage during the electrochemical

synthesis. This can be understood on the basis of the particle

growth mechanism that may be represented by the following

three steps, with the oxygen supplied by the electro-splitting

of water (step 2),

Sn! Sn4þ þ 4e� ð1Þ

2H2O! 4Hþ þ O2 þ 4e� ð2Þ

Sn4þ þ O2 þ 4e� ! SnO2 ð3Þ

By increasing the applied electrode voltage, the anodic

generation of Sn4+ will be accelerated (step 1), leading to

an increase of the nucleation sites for oxide particle for-

mation and hence decreasing particle dimensions (step 3).

In other words, electrode voltages can be exploited as an

effective variable in the manipulation of the particle size.

Furthermore, it can be seen from Fig. 1 that, for the

samples prepared at 20 and 30 V, the XRD profiles also

exhibit two additional weak peaks for the (111) and (210)

diffraction planes, whereas they are indiscernible for the

sample synthesized at 40 V. This discrepancy can again be

ascribed to the line broadening effect because of the small

particle size. Table 1 summarizes the peak position, lattice

spacing (d), and ratios of the peak intensity of the three

strongest XRD peaks (I101/I110 and I211/I110) for SnO2
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Fig. 1 XRD patterns of (a) bulk

SnO2 from the Joint Committee

Powder Diffraction Standard

(JCPDS) No. 41-1445; (b) the

as-prepared SnO2 particles at

40 V; and the annealed particles

that were initially synthesized at

different voltages: (c) 20 V, (d)

30 V, and (e) 40 V

Table 1 XRD peak position (2h), lattice spacing (d), and ratio of peak intensity of the three SnO2 nanoparticle samples

Samples (110) (101) (211)

2h dhkl (nm) 2h dhkl (nm) I101/I110 2h dhkl (nm) I211/I110

SnO2 (JCPDS) 26.63 0.3347 33.95 0.2640 0.80 51.88 0.1762 0.61

SnO2 (20 V) 26.64 0.3344 33.91 0.2641 1.08 51.87 0.1761 1.24

SnO2 (30 V) 26.68 0.3339 33.96 0.2638 1.06 51.85 0.1762 1.14

SnO2 (40 V) 26.52 0.3358 33.95 0.2638 1.09 51.84 0.1762 1.54
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nanoparticles prepared at different voltages, along with

standard data for bulk SnO2 from JCPDS. One can see that

the peak positions and lattice spacing exhibit no appre-

ciable difference between the three particle samples and the

bulk standard. In contrast, the ratios of I101/I110 and I211/

I110 for bulk SnO2 are both less than 1, whereas for the

three particle samples, the ratios are all larger than 1. This

observation seems to indicate that the [101] and [211]

orientations become increasingly dominant in nanosized

SnO2 particles, and more so for the SnO2 nanoparticles

prepared at higher electrode voltages. That is, the present

study seems to provide a simple method to synthesize SnO2

nanoparticles with abundant [101] and [211] orientations. It

should be noted that in previous studies of SnO2 films

prepared by the CVD method, the [200] orientation was

found to be predominant [48].

To further characterize the particle morphology, TEM

studies were then carried out. Figure 2 displays the low-

resolution TEM micrographs of the three samples before

and after thermal annealing. First, rather uniform particles

can be seen in the as-synthesized SnO2 samples, which

appear to agglomerate into an aggregate structure with a

cross section of 40–50 nm in diameter and a somewhat

rough surface morphology (panels a, c, and e). After sin-

tering at 700 �C (panels b, d, and f), the particle aggregates

can be seen to shrink rather substantially into a highly

crystalline form, and concurrently the diameter decreases

to only 10–15 nm, very consistent with those estimated

from XRD measurements (vide ante)—more details can be

seen in Fig. 3. Furthermore, the surface roughness is also

significantly reduced. Interestingly, nanorods/nanotubes

can also be observed with the samples prepared at 20 V

(marked with circles in panel b), though the density is very

low. In both cases, because of the lack of stabilizing sur-

factants, extensive agglomeration of particles can be seen.

The evolution of the particle crystallinity was then

examined by HRTEM studies, which shows consistent

results with the XRD data (Fig. 1). Before thermal

annealing, the three particle samples (Fig. 3a, c, and e)

exhibit no crystalline feature, in agreement with the

amorphous nature of the particles as manifested in XRD

measurements (Fig. 1b). Additionally, it can be seen that

the aggregates observed in low-resolution TEM images

(Fig. 2) indeed consist of a porous network of particles of

2–3 nm in diameter. In sharp contrast, after sintering at

700 �C, all three particle samples exhibit very well-defined

crystalline lattice fringes (Fig. 3b, d, and f). For instance,

as marked in the HRTEM micrographs (Fig. 3), interplanar

spacings of 0.33 and 0.26 nm can be clearly observed,

which correspond to the (110) and (101) planes of rutile

SnO2, respectively. Note that in XRD measurements

(Fig. 1c–e), the peaks from these two diffractions are also

most intense. Also, twin structures may be found, as

highlighted in panel d. Twinning is a characteristic feature

of the coalescent grains. The straight twin boundaries are

coherent and consist of Sn atoms shared by the two

neighboring components of the twin [49]. This experi-

mental feature is in line with the collapse of the originally

amorphous particles and the resulting shrinkage of the

particle aggregates as observed in Fig. 2.

Further insights into the particle structure were obtained

by Raman scattering measurements. Figure 4 shows the

room-temperature Raman scattering spectra of the three

annealed SnO2 nanoparticles. In general, SnO2 with the

rutile structure belongs to the space group of D4h, of which

the normal lattice vibration at the C point of the Brillouin

zone is given on the basis of group theory [50, 51]

C ¼ 1A1g þ 1A2g þ 1A2u þ 1B1g þ 1B2g þ 2B1u

þ 1E1g þ 3Eu ð4Þ

Among these vibrations, A1g, B1g, B2g, and E1g are Raman-

active modes, and symmetrical A2u and Eu are infrared-

active. However, the symmetrical A2g and B1u are optically

inactive. The three fundamental Raman peaks at around

480, 640, and 780 cm-1 in Fig. 4 (right panel) are therefore

ascribed to the E1g, A1g, and B2g vibration modes of the

rutile SnO2, respectively. It can also be seen from the figure

that the A1g mode has the strongest Raman intensity, fol-

lowed by the B2g and E1g modes, in good agreement with

those observed in previous studies [15, 20, 32, 52, 53]. The

Raman studies further confirm that the calcined SnO2

nanoparticles prepared above exhibit a tetragonal rutile

structure. However, the Raman signal from B1g mode

cannot be observed because of the very low intensity (e.g.,

I(A1g)/1000) [54]. In addition to the three strong peaks,

there is another weak peak at around 694 cm-1 for all the

three particle samples, which is assigned to the IR-active

A2u LO mode (the mode of the longitudinal optical pho-

nons) [53].

The peak positions corresponding to the E1g, A1g, and

B2g vibration modes of the three samples are summarized

in Table 2, along with those of bulk SnO2 [53]. It can be

clearly seen that the Raman frequencies of the annealed

SnO2 nanoparticles exhibit a blue-shift in comparison with

those of bulk SnO2, and the blue shift becomes increasingly

significant with decreasing particle size. This may be

ascribed to the variation of defect concentration, as it has

been showed previously that defect structures within nano-

sized materials strongly affect the Raman scattering pro-

files by producing large blue shift and broadening of the

spectral peaks [55, 56].

Figure 4 (left panel) shows the corresponding Raman

scattering spectra in the low frequency range. Interestingly,

for all the three particle samples, there are two broad peaks

around 260 and 310 cm-1, which are rarely observed in

bulk SnO2 materials. However, such low-frequency Raman
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peaks have recently been reported with SnO2 nanomaterials

[52, 53]. It is usually accepted that some inactive modes in

bulk materials can be rendered active in nanoparticles or

other nanomaterials due to the size effect that breaks down

the symmetry restriction. So the Raman bands that appear

in the low frequency window may be ascribed to the active

mode from the inactive Eu TO mode (TO is the mode of

transverse optical phonons) [52, 53, 57, 58].

Figure 5 shows the UV-visible spectra of the three

annealed SnO2 samples synthesized at different voltage. A

narrow absorption band can be seen of all the three samples

at the characteristic wavelength of about 304 nm, which is

superimposed onto the exponential decay absorption pro-

file, suggesting a narrow size distribution of the SnO2

nanoparticles (cf. Figs. 2 and 3). While it is tempting to

estimate the bandgap energy of the SnO2 nanoparticles

Fig. 2 Transmission electron

micrographs of SnO2

nanoparticles synthesized at

different voltages: 20 V (a, b),

30 V (c, d), and 40 V (e, f). The

left panels (a, c, and e) are the

as-synthesized particles,

whereas the right panels (b, d,

and f) are particles that have

undergone thermal sintering at

700 �C for 6 h. The scale bars

are all 100 nm
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based on this absorption peak (4.08 eV), the particle core

size of the annealed samples is actually too large to observe

any quantum confinement effect as the Bohr radius of SnO2

is merely 2.7 nm [39]. That is, the obtained particles are

anticipated to behave like the bulk materials with a band-

gap of 3.65 eV.

The room-temperature PL behaviors of the SnO2 nano-

particles were also investigated and the results are shown in

Fig. 6. It can be seen that when excited at 236 nm, the

three annealed particle samples all exhibit a broad strong

emission band that consists of a series of emission peaks

located at 372, 420, 462, and 525 nm. It is well-known that

Fig. 3 High-resolution

transmission electron

micrographs of SnO2

nanoparticles synthesized at

different voltages: 20 V (a, b),

30 V (c, d), and 40 V (e, f). The

left panels (a, c, and e) are the

as-synthesized particles,

whereas the right panels (b, d,

and f) are particles that have

undergone thermal sintering at

700 �C for 6 h. The scale bars

are all 5 nm. In panel (d), the

dashed lines highlight the twin

structure of the SnO2

nanoparticles
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the visible light emissions of SnO2 are related to the defect

levels within the band gap, such as O vacancies and Sn

interstitial sites formed during the particle growth [59, 60].

For instance, the peak at 372 nm is generally ascribed to

the band-to-acceptor transition and related to the impurity

or defect concentration [61]. The emission peak at 420 nm

can be attributed to structural defects or luminescence

centers, such as nanocrystals and defects in SnO2 nano-

particles [61]. The peak at 462 nm is possibly from the

electronic transition mediated by defect levels such as O

vacancies in the band gap [62]. Finally, the 525 nm

emission is likely to originate from oxygen vacancies

where its intensity increases with increasing concentration

of oxygen vacancies [61]. A similar emission has also been

reported in the photoluminescence studies on other SnO2

nanomaterials [32, 63].

Conclusion

An effective electrochemical route has been developed for

the preparation of SnO2 nanoparticles whose dimensions

can be controlled by the applied voltage. XRD measure-

ments showed that whereas the as-prepared SnO2

nanoparticles were amorphous, thermal sintering at 700 �C

transformed the particles into a tetragonal rutile crystalline

structure with abundant [101] and [211] orientations.

Consistent results were observed in HRTEM measurements

which exhibited well-defined crystalline lattice fringes.

Further structural insights were obtained by varied spec-

troscopic measurements, such as Raman scattering, UV-

Vis and photoluminescence spectroscopy. Three funda-

mental Raman peaks were identified which were ascribed

to the E1g, A1g, and B2g vibration modes, and the peak

positions were found to blue-shift with the decrease of
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Fig. 4 Room-temperature

Raman scattering spectra of the

annealed SnO2 nanoparticles

that were initially synthesized at

different voltages: 20, 30, and

40 V

Table 2 Raman peak positions corresponding to the E1g, A1g, and

B2g vibration modes of SnO2

Sample E1g (cm-1) A1g (cm-1) B2g (cm-1)

SnO2 (bulk)a 474.0 632.0 774.0

SnO2 (20 V) 479.0 633.7 774.1

SnO2 (30 V) 479.5 636.8 777.6

SnO2 (40 V) 484.4 640.8 782.5

a Data from Ref. [53]
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J Mater Sci (2008) 43:5291–5299 5297

123



particle size possibly as a consequence of the increasing

concentration of defects in the particles. In addition, the

particles all displayed a broad photoluminescence band

consisting of various emission peaks. In short, the present

work provides a simple and effective method for the large-

scale synthesis of SnO2 nanoparticles with controlled

dimensions and structures. Further work is being carried

out to examine their electronic characteristics which may

have implications in energy conversion.
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